REST reduction is essential for hypoxia-induced neuroendocrine differentiation of prostate cancer cells by activating autophagy signaling

نویسندگان

  • Tzu-Ping Lin
  • Yi-Ting Chang
  • Sung-Yuan Lee
  • Mel Campbell
  • Tien-Chiao Wang
  • Shu-Huei Shen
  • Hsiao-Jen Chung
  • Yen-Hwa Chang
  • Allen W. Chiu
  • Chin-Chen Pan
  • Chi-Hung Lin
  • Cheng-Ying Chu
  • Hsing-Jien Kung
  • Chia-Yang Cheng
  • Pei-Ching Chang
چکیده

Prostate cancer (PCa) with neuroendocrine differentiation (NED) is tightly associated with hormone refractory PCa (HRPC), an aggressive form of cancer that is nearly impossible to treat. Determining the mechanism of the development of NED may yield novel therapeutic strategies for HRPC. Here, we first demonstrate that repressor element-1 silencing transcription factor (REST), a transcriptional repressor of neuronal genes that has been implicated in androgen-deprivation and IL-6 induced NED, is essential for hypoxia-induced NED of PCa cells. Bioinformatics analysis of transcriptome profiles of REST knockdown during hypoxia treatment demonstrated that REST is a master regulator of hypoxia-induced genes. Gene set enrichment analysis (GSEA) of hypoxia and REST knockdown co-upregulated genes revealed their correlation with HRPC. Consistently, gene ontology (GO) analysis showed that REST reduction potential associated with hypoxia-induced tumorigenesis, NE development, and AMPK pathway activation. Emerging reports have revealed that AMPK activation is a potential mechanism for hypoxia-induced autophagy. In line with this, we demonstrate that REST knockdown alone is capable of activating AMPK and autophagy activation is essential for hypoxia-induced NED of PCa cells. Here, making using of in vitro cell-based assay for NED, we reveal a new role for the transcriptional repressor REST in hypoxia-induced NED and characterized a sequential molecular mechanism downstream of REST resulting in AMPK phosphorylation and autophagy activation, which may be a common signaling pathway leading to NED of PCa.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

MAOA-a novel decision maker of apoptosis and autophagy in hormone refractory neuroendocrine prostate cancer cells

Autophagy and apoptosis are two well-controlled mechanisms regulating cell fate. An understanding of decision-making between these two pathways is in its infancy. Monoamine oxidase A (MAOA) is a mitochondrial enzyme that is well-known in psychiatric research. Emerging reports showed that overexpression MAOA is associated with prostate cancer (PCa). Here, we show that MAOA is involved in mediati...

متن کامل

Autophagy Pathway Is Required for IL-6 Induced Neuroendocrine Differentiation and Chemoresistance of Prostate Cancer LNCaP Cells

Prostate cancer (PCa) cells undergoing neuroendocrine differentiation (NED) are clinically relevant to the development of relapsed castration-resistant PCa. Increasing evidences show that autophagy involves in the development of neuroendocrine (NE) tumors, including PCa. To clarify the effect of autophagy on NED, androgen-sensitive PCa LNCaP cells were examined. Treatment of LNCaP cells with IL...

متن کامل

Quercetin protects PC-12 cells against hypoxia injury by down-regulation of miR-122

Objective(s): Impairment of nerve cells of brain induced by hypoxia results in energy-deprivation and dysfunction, which accompanies with neurons apoptosis. Improving function of nerve cells is important for treating cerebral anoxia. This study aimed to investigate the role of Quercetin (Quer) in hypoxia-induced injury of pheochromocytoma (PC-12) cells. Materials and Methods: PC-12 cells were c...

متن کامل

Notch signaling modulates hypoxia-induced neuroendocrine differentiation of human prostate cancer cells.

UNLABELLED Prostate carcinoma is among the most common causes of cancer-related death in men, representing 15% of all male malignancies in developed countries. Neuroendocrine differentiation (NED) has been associated with tumor progression, poor prognosis, and with the androgen-independent status. Currently, no successful therapy exists for advanced, castration-resistant disease. Because hypoxi...

متن کامل

DNA Damage and Cellular Stress Responses Notch SignalingModulates Hypoxia-InducedNeuroendocrine Differentiation of Human Prostate Cancer Cells

Prostate carcinoma is among the most common causes of cancer-related death in men, representing 15% of all male malignancies in developed countries. Neuroendocrine differentiation (NED) has been associated with tumor progression, poor prognosis, and with the androgen-independent status. Currently, no successful therapy exists for advanced, castration-resistant disease. Because hypoxia has been ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2016